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Part 1 Geometric Mechanics 
 
1 Physics and Geometry 
1.1 Newton and geometry 
1.2 State space and flows 
1.3 Coordinate transformations 
1.4 Non-inertial transformations 
1.5 Uniformly rotating frames 
1.6 Rigid-body motion 
 
 
Jean Bernard Léon Foucault  (1819 – 1868) 
was a French physicist who performed one of 
the earliest measurements of the speed of light.  
In 1851 he constructed a long and heavy 
pendulum that was installed in the Pantheon in 
Paris.  As it oscillated, it precessed, 
dramatically proving the rotation of the Earth.  
This made him somewhat of a celebrity, and 
the pendulum bears his name. 
 
 
 
 
 
Gaspard-Gustave de Coriolis (1792 -
1843) was a French mathematician, 
mechanical engineer and scientist. He 
was the first to coin the term "work" for 
the product of force and distance, but is 
best known for his mathematical work 
on the motion of moving bodies, 
publishing the paper titled Sur les 
équations du mouvement relatif des 
systèmes de corps (On the equations of 
relative motion of a system of bodies) 
(Coriolis 1835).  This work did not 
contain any mention of projectile 
trajectories on the rotating Earth, nor the 
cyclone motion in atmospheric science, 
but his mathematics were behind both of 
these effects, and his name was attached 
to these effects only in the 20th century. 
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2 Hamiltonian Dynamics and Phase Space 
2.1 Hamilton’s principle 
2.2 Conservation laws 
2.3 The Hamiltonian function 
2.4 Central force motion 
2.5 Phase space 
2.6 Integrable systems and action–angle variables 
 
Karl Gustav Jacob Jacobi 

Karl Gustav Jacob Jacobi (1804 – 1851) was 
a Prussian mathematician best known for his 
development of analytical geometry of many 
variables (Jacobian matrix) and for his 
extension of Hamilton’s work to dynamics.  
Jacobi was the first to derive the conservation 
of volume of phase space for a conservative 
dynamical system (although in his time there 
was no current notion of space) using a 
theorem of Liouville (although Liouville was 
not aware of its dynamical significance until 
much later).  His lectures on dynamics from 
1848 became the standard physics reference 
for many generations to follow. 
 
 
 
 

 
Vladimir I. Arnold 

Vladimir I. Arnold (1937—2010) was a Russian 
mathematician widely known for his role in the 
Kolomogorov-Arnold-Moser theory of nearly 
integrable Hamiltonian dynamics.  He was a 
student of Kolmogorov at Moscow State 
University in the late 1950’s.  His mathematical 
approaches to physics were highly geometric, 
after the tradition of Poincaré, and he played a 
critical role in the application of symplectic 
geometry to Hamiltonian systems.  His textbook 
Mathematical Methods in Classical Mechanics is 
the leading graduate-level textbook on geometric 
aspects of modern dynamics, with a strong 
intuitive flavor.  Arnold is known for the Arnold 
Cat Map of the torus onto itself, which he 
demonstrated using the image of a cat as an 
example of phase space mixing in chaotic 



  HISTORICAL NOTES: MODERN DYNAMICS 

7/25/19 4 
 

systems.  He is also known for Arnold Tongues in the synchronization of oscillators on 
the torus. 
 
 
Notes on the Historical Development of Phase Space 
(See more details in “The Tangled Tale of Phase Space”, D. Nolte, Physics Today, April, 
pp. 33-38, (2010) 
 
 The origins of both the concept of phase space as well as its name are surprisingly 
obscure, especially in view of the central role it plays in virtually every aspect of modern 
physics.  The obscurity of its origins is partially a consequence of its ubiquity: it is in 
such common use today that few authors reference its origins when the term first arises in 
physics textbooks.  The obscurity is also a consequence of retro-active attribution made 
looking backwards with hindsight.  This is especially true in the case of phase space.  In 
virtually every textbook on dynamics, the origin of phase space is placed in the hands of 
Liouville, usually with a citation dated to a paper of Liouville’s in 1838 [1] in which he is 
supposed to have derived the theorem on the conservation of volume in phase space.  In 
fact, no mention is made in Liouville’s paper of phase space let alone dynamical systems.  
The paper is purely mathematical on the behavior of a class of solutions to specific 
differential equations.  Though he lived to a ripe old age (he died in 1883), he was 
apparently unaware of its application to mechanics [2][3].  Therefore, the paper cited 
routinely as the origin of phase, by even the most rigorous textbooks, is not it!  How did 
this happen?  And if not by Liouville, then by whom and when and why?  And where did 
it get it’s somewhat strange name of “phase space”? 
 Before answering these questions, it is interesting to first look at possible 
candidates who did not in fact invent it or name it.  One possible candidate would be 
Gibbs.  Gibbs’ works were highly influential, and he was not afraid to coin new phrases.  
The phrase “statistical mechanics” was one of his inventions, as was “ensemble”.  But in 
his influential textbook on statistical mechanics from 1902 [4], though he cites Liouville 
(like everyone else) and rederives the conservation of phase space volume, he calls it by 
the rather awkward phrase “extension in phase” in place of our modern “volume of phase 
space”.  The word “phase” is certainly there, but not “space”, and he turns out not to be 
the the originator even of the “phase” part.   
 Another candidate would be Planck.  After all, the derivation of the mode density 
leading to the Planck spectrum is explicitly an integral over phase space.  Furthermore 
the volume element in phase space is given as …, i.e., Planck’s constant and 
also the phase of a quantum mechanical wave.  But here, too, we do not find any mention 
of the phrase “phase space” in Planck’s papers of 1900 [5] through 1910.  He uses the 
concept, as did Gibbs; it is clearly defined by the turn of the last century, but it was used 
without a name, or at least it’s modern name. 
 The final possible candidate that often springs to mind when discussing phase 
space is Poincaré.  He certainly was the first to use it extensively for the solution of 
dynamical systems, and invented powerful analytical tools for studying complex motions 
in phase space.  These new approaches appeared in his famous treatise on the three-body 
problem and celestial mechanics published between 1890 and 1896 [6].  But he neither 
invented phase space, nor named it.  Therefore, we can determine that the concept of 

 dpdq = !
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phase space was well established by 1900, but it’s name was still missing.  To answer the 
question on the invention of phase space, we need to look farther back in time.  To 
answer the question on the invention of its modern name, we need to look closer in time.  
Let’s answer the first question first by going back to Liouville and finding out what role 
he really did play in this story and how his contribution found its way into all our modern 
textbooks. 
 Liouville’s paper of 1838 appeared only a few years after Hamiltons publication 
of his dynamics [7, 8], and yet it made no reference to its application to dynamics, and it 
is possible that Liouville was unaware of Hamilton’s work.  This connection was first 
made in 1843 by Jacobi who was the first to recognize that the conditions on the system 
of differential equations that Liouville had studied were in fact satisfied by Hamilton’s 
equations as reformulated by Jacobi.  Jacobi’s work is the mathematical origin of the 
application of phase space, though in the 1840’s there was no concept of “space” beyond 
the three dimensions of our physical space.  This was the time (slightly) before 
Grassmann [9] and Riemann [10] and their new notions of multidimensional spaces.  For 
Jacobi, there was no space, only products of differentials of many variables.  And there 
certainly were no “trajectories” through the phase space, other than physical trajectories 
of individual particles.  Therefore, Jacobi is the originator of the analytical treatment of 
dynamical systems of many variables, but cannot be designated the originator of phase 
space.  The time was not right. 
 Jacobi’s work would likely have sunk into obscurity if not for the later generosity 
of Ludwig Boltzmann.  Boltzmann took up the reigns of the kinetic theory of heat laid 
down by Maxwell and he developed it into a probabilistic theory that relied on the laws 
of dynamics governing the atoms of the gas (at a time before the atomic theory of matter 
was even established).  In the derivation of his dynamical probability distributions, he 
required the use of conservation of volume in phase space.  This he rederived and 
published in 1871 [11, 12], unaware at the time of Jacobi’s work or of his use of 
Liouville’s theorem.  By this time, Cayley’s and Riemann’s concepts of multidimensional 
spaces were becoming more widely accepted and Boltzmann specifically for the first time 
explicitly described systems of many particles as a single trajectory through a highly 
multi-dimensional space.  Boltzmann’s paper of 1871 can therefore take its rightly place 
as the invention of phase space and of a single trajectory describing many-body systems.  
He was able to give dynamical behavior a geometric interpretation (trajectory) where 
Jacobi was not because the time was right.  Concepts of space had matured in the time 
between 1843 and 1871, allowing Boltzmann to visualize it. 
 Given Boltzmann’s invention of phase space and of the system trajectory through 
it, why does Liouville get all the credit?  Boltzmann later became aware of Jacobi’s 
contribution [2][13], and generously placed Liouville’s name on his conservation 
theorem in his famous Lectures on Gas Theory of 1896 [14].  Had it not been for Jacobi’s 
reference to Liouville in his Vorlesung, Boltzmann would likely never have known of 
Liouville’s paper, since he rederived the theorem independently.  Therefore, what could 
very reasonably have been called Boltzmann’s theorem, is called Liouville’s theorem 
because of Boltzmann’s generosity.  Ironically, his naming it Liouville’s theorem is one 
of the chief reasons for the obscurity of his own role in the invention of phase space. 
 Having answered the first question on the invention of the concept of phase space, 
we are left with the question about its name.  Why phase?  What phase is it refering to?  
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The answer to this question is also partly contributed to Boltzmann, but not the whole 
answer. 
 As Boltzmann was developing the kinetic theory of gases, specifically the system 
trajectory through phase space and the definition of ergodic systems, he made the analogy 
[15][16] [12, 17] between trajectories in 2-dimensional phase space and what are called 
Lissajou figures.  Lissajou figures, also sometimes known as Bowditch-Lissajou figures, 
are two-dimensional patterns that arise when two harmonic time series are plotted against 
each other.  These are best experienced in physics labs using oscilloscopes and function 
generators.  When the two harmonic frequencies are rational fractions, periodic patterns 
occur.  But when the frequency ratio is irrational, then the system trajectory visits all 
points on the plane bounded by the signal amplitude.  In Lissajou figures, the relative 
phase between the harmonic signals plays an important role in determining the pattern, 
and the instantaneous point on the figure defines the instantaneous relative phase of the 
two signals.  For this reason, the point on the figure is referred to as the phase point.  
Boltzmann borrowed this expression from Lissajou figures and applied it to the 
instantaneous point in phase space.  Therefore, the historical origin of the term “phase” 
can be attributed to Boltzmann.   
 Ironically, Boltzmann did not take the last step and give phase space its full name.  
During the last decade of the 19th century, the use of the phrase “space” was still mainly 
restricted to refer to our physical three-dimensional space.  Although the geometry of 
multidimensional spaces was well developed by this time, Riemann’s term “manifold” 
was used for general spaces.  It is likely that for this reason, neither Boltzmann, nor 
Gibbs writing at roughly the same time, called it “phase space” because of prejudice 
against the use of “space” for general n-dimensions. 
 This situation quickly changed in the first decade of the 20th century, especially 
with the advent of relativity and the growing common conception of four-dimensional 
space-time, where time takes on some of the properties of a fourth spatial dimension.  
Boltzmann by this time was dead (by his own hand), but one of his students, Paul 
Ehrenfest, was asked by Felix Klein to write a review of Boltzmann’s work for the 
Encyclopdeia of Mathematical Sciences.  Paul Ehrenfest, with his physicist wife Tatyania, 
published the encyclopedia article in 1911 [18].  They approached the subject highly 
systematically, seeking to make precise definitions.  This was partly in response to the 
controversies that had raged during the later part of Boltzmann’s life on proofs or dis-
proofs of the ergodic nature of gas systems.  Therefore, Paul took great pains to define a 
rigorous name for the multidimensional dynamical space…and invented the term “G-
space” where the instantaneous state of the system was the “G-point”. 
 There is an irony here.  By this time, the stigma of using the expression “space” 
for n-dimensions had disappeared, and so he was very comfortable in using “space” to 
define Boltzmann’s n-dimensions.  But he dispensed with the term “phase”, possibly 
because of its obscurity.  Yet at the very beginning of the encyclopedia article, in order to 
set the context for his newly invented term of “G-space”, he needed to refer back to 
Boltzmann’s usage of “phase”.  He briefly refers to “Phasenraum” (phase space) in the 
article to set the stage, and then dispense with it.  This is the first usage of the expression 
“phase space” in print.  I suspect that this term was likely used colloqually among 
Boltzmann’s students, in the hallways, so to speak.  But it had not appeared previously in 
print. 
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 Encyclopedia articles in this day were widely read, somewhat like Reviews of 
Modern Physics today, and the Ehrenfest’s article was no exception. And here is the 
irony:  what stuck in reader’s minds was his toss-away phrase “phase space”.  Virtually 
everyone ignored his “G-space”.   
 Within two years of the Ehrenfests article of 1911, two paper appeared in the 
same issue of Annalen der Physik that used the expression “phase space” for the first 
time in journal publications.  These were papers in 1913 on ergodic theory by Rosenthal 
[19] and Plancheral [20].  The usage of “phase space” stuck, first appearing in a journal 
paper title in 1918, and becoming increasingly common after that.   
 Interestingly, Rosenthal later became a professor of mathematics at Purdue 
University, passing away in 1959.  Professor Ramdas remembers him.  So the somewhat 
obscure history of phase space, after a convoluted path that starts with Liouville, finishes 
at Purdue. 
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Auffassung in der Mechanik," in Encyklopädie der mathematischen 
Wissenschaften, vol. IV, Part 32. Leipzig: B. G. Teubner, 1911. 
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 The path to phase space: Jacobi synthesized the unrelated work of Hamilton and 
Liouville into the first derivation of conservation of phase-space volume, but without concepts of 
space.  Boltzmann synthesized the unrelated work of Jacobi and Lissajou-Bowditch into a 
probabilistic theory of phase space, while Poincaré applied phase space concepts to systems of 
small number.  Notions of a trajectory in a 2n-dimensional space became common after Gibbs, 
and phase space (Phasenraum) was finally named by Ehrenfest.  The first explicit uses of the term 
“phase-space” in a paper were separately by Rosenthal and Plancheral, writing on the ergodic 
theory motivated by the work of Boltzmann and Poincaré. 
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Part 2 Nonlinear Dynamics 
 
3 Nonlinear Dynamics and Chaos 
3.1 One-variable dynamical systems 
3.2 Two-variable dynamical systems 
3.3 Discrete iterative maps 
3.4 Three-dimensional state space and chaos 
3.5 Fractals and strange attractors 
3.6 Hamiltonian chaos 
 

 
Henri Poincaré (1854-1912) was a highly influential 
French mathematician and theoretical physicist in his 
day.  He introduced the necessary requirement that 
physics be independent of coordinate system, which 
became the First Postulate of Special Relativity.  He 
was the first to discover chaos, which he stumbled 
upon in solutions to the three-body problem that he 
had prepared for a mathematics prize in honor of the 
King of Sweden in 1887.  It was also with this work 
on celestial mechanics that he developed his integral 
invariants, one of which gave the first 
methematically rigorous proof of what has become 
known as Liouville’s Theorem on the conservation 
of phase space volume. 
 
 
 

 
Edward Lorenz (1917-2008) was an American 
mathematician who is best known for the Lorenz 
attractor also called the Lorenz Butterfly.  His 
professional interests were in meterology and the 
introduction of nonlinear methods.  He published a 
paper in 1963 Deterministic Nonperiodic Flow in the 
Journal of Atmospheric Science that established 
several of the tools used today in nonlinear dynamics.  
In 1969 he coined the phrase “Butterfly Effect” as a 
metaphor for sensitivity to initial conditions (SIC). 
 
 
 
 
 
  



  HISTORICAL NOTES: MODERN DYNAMICS 

7/25/19 10 
 

4 Coupled Oscillators and Synchronization 
4.1 Coupled linear oscillators 
4.2 Simple models of synchronization 
4.3 External synchronization of an autonomous phase oscillator 
4.4 External synchronization of a van der Pol oscillator 
4.5 Mutual synchronization of two autonomous oscillators 
 
Christian Huygens 

Christian Huygens (1629 – 1695), a Dutch 
physicist, was the first to explore the 
phenomena of oscillations and waves in 
great detail.  He was a prolific inventor and 
tinkerer of clocks and watches. In 1665 he 
observed that two pendulum clocks 
mounted near each other on a beam in his 
workshop could start out of phase, but 
would eventually come into phase and 
remain there in an “odd sympathy”. 
Huygens also proposed that light is made of 
waves, which went counter to Newton’s 
theory of light as particles.  This theory had 
to wait until the time of Thomas Young 
(1803) before being generally accepted.  
Huygens was the first to propose that Saturn 
had rings; one of the major gaps bears his 
name today.  Interestingly, the gap is caused 
by a dynamical resonance not unlike the 
“odd sympathy” of his pendulum clocks, 
although he could not have known this at 

the time. 
 
Arthur Winfree 

Arthur Winfree (1942 – 2002) was a theoretical 
biologist at the University of Arizona.  He was one of 
the leaders in the mathematical description of 
biological rythms and of coupled oscillators, drawing 
inspiration from brainwaves, fireflies and pacemaker 
cells in the heart.  His key insight was to ignore the 
amplitudes of oscillations and concentrate on the 
phases.  This provided the foundation for studies of 
phase singularities in complex and dynamical systems.  
His work showed that synchronization could be either 
life-sustaining or life-arresting, depending on the 
system and circumstances, and that only mild 
perturbations are sometimes sufficient to stop 
spontaneous oscillations. 
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5 Network Dynamics 
5.1 Network structures 
5.2 Random network topologies 
5.3 Diffusion and epidemics on networks 
5.4 Linear synchronization of identical oscillators 
5.5 Nonlinear synchronization of coupled phase oscillators on regular graphs 
 
Leonard Euler (1701-1783) was a Swiss mathematician and physicist who was 

amazingly prolific and broad in his interests.  His 
reworking of Newton’s mechanics into the 
language of calculus and functions, published in 
1736, was the first to give physics its modern 
“look” and set the stage for Lagrange.  Euler was 
the father of many new fields.  His solution in 
1735 of the Seven Bridges of Königsberg problem 
introduced new mathematical methods and 
initiated the fields of graph theory and topology.  
This problem concerns a town in Prussia (now in 
Russia) that had two islands and two river banks 
that were connected by seven bridges.  By 
reducing the land masses to nodes and the bridges 
to edges, while ignoring the spatial distances 
involved, he was able to prove that no one could 
cross each bridge only once during a single walk 
around town.   

 
Paul Erdös (1913-1996) was a Hungarian mathematician who was possibly more prolific 

than Euler.  He was an itinerant scholar, moving frequently 
among numerous international universities and institutions.  
Of the many fields and topics he explored, it was 
combinatorics that lead him to study the statistical 
properties of random graphs, which he published in 1959 
with Alfréd Rényi.  Erdös was also famous for a series of 
prizes that he offered personally to anyone who would 
solve important mathematical problems of the day.  Many 
of these problems have yet to be solved. 
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Part 3 Complex Systems 
 
 
6 Neurodynamics and Neural Networks 
6.1 Neuron structure and function 
6.2 Neuron dynamics 
6.3 Network nodes: artificial neurons 
6.4 Neural network architectures 
6.5 Hopfield neural network 
6.6 Content-addressable (associative) memory 
 
 
Warren McCulloch (1898-1969) and Walter Pitts (1923-1969) 

 
Warren McCulloch was a neurophysiologist who 
worked at MIT, Yale and Chicago.  He was a founding 
member and early president of the American Society 
for Cybernetics.  Walter 
Pitts was a student of 
logician Rudolph 
Carnap (“The Logical 
Syntax of Language” 
1934) and met 
McCulloch at Chicago.  

In 1943 they proposed a simple artificial neural network 
model published in "A Logical Calculus of Ideas 
Immanent in Nervous Activity".  Later, Pitts worked with 
Norbert Wiener at MIT. 
 
 
 
 
 
 
John Hopfield (1933 - ) 

John Hopfield (b. 1933) is a solid state theorist who 
received his PhD at Cornell University as the student of 
Albert Overhauser.  He has held faculty positions at UC 
Berkeley, Princeton and Cal Tech.  He is best known for 
an associative memory model he developed in 1982, now 
generally known as the Hopfield Network Model. 
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7 Evolutionary Dynamics 
7.1 Population dynamics 
7.2 Virus infection and immune deficiency 
7.3 The replicator equation 
7.4 The quasi-species equation 
7.5 The replicator–mutator equation 
7.6 Dynamics of finite numbers (optional) 
 
 

Sewall Wright (1889-1988) was an American 
theoretical biologist who coined the idea of a 
fitness landscape in the context of theoretical 
population genetics.  He was one of the founders of 
theoretical population genetics, together with J. B. 
S. Haldane and R. A. Fisher, who combined ideas 
of evolutionary theory with genetics in the 1930s. 
 
 
 
 
 
 
 
 
 
 

 
Manfred Eigen (1927 - ) is a German biophysical 
chemist who won the 1967 Nobel Prize in 
Chemistry for his work on the quasi-species 
model that he developed with Peter Schuster.  
The idea of the hypercycle was originally 
developed to explain the emergence of order in 
prebiotic systems that may have led to the origin 
of life.  The quasispecies equation lead to more 
general explorations within the field of 
evolutionary dynamics. 
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8 Economic Dynamics 
8.1 Micro- and macroeconomics 271 
8.2 Supply and demand 272 
8.3 Business cycles 275 
8.4 Consumer market competition 280 
8.5 Macroeconomics 285 
8.6 Stochastic dynamics and stock prices (optional) 292 
 

 
Fischer Black (1938 – 1995) was an American economist 
who is most famous for the paper published with Myron 
Scholes on “The Pricing of Options and Corporate Liability” 
in the Journal of Political Economy in 1973.  He entered 
Harvard as a physics graduate student, but eventually 
received his PhD based on work he did under Marvin 
Minsky at MIT on the topic of artificial intelligence.  He 
was first exposed to economic theory at a consultancy firm.  
Black died in 1995 and was not able to share in the Nobel 
Prize in Economics in 1997 although his contribution was 
mentioned by the Nobel committee. 
 
 
 
 
 
 

 
 
 
Myron Scholes (1941 - ) received the Nobel Prize in 
Economics in 1997 for his work with Fischer Black on the 
pricing of options and the development of the Black-
Scholes equation. 
 
 

 
 
 
 
 
Robert C. Merton (1944 - ) is an American economist 
who received the Nobel Prize in Economics in 1997 
together with Myron Scholes.  Merton expanded the 
work of Black and Scholes. 
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Part 4 Relativity and Space–Time 
 
 
9 Metric Spaces and Geodesic Motion 
9.1 Manifolds and metric tensors 
9.2 Reciprocal spaces in physics 
9.3 Derivative of a tensor 
9.4 Geodesic curves in configuration space 
9.5 Geodesic motion 
 
 

Johann Carl Friedrich Gauss (1777-1855) was a 
German mathematician and physicist who is 
sometimes called the Prince of Mathematicians.  He 
was an extremely influential figure in the 
development of mathematics during his lifetime and 
originated several new fields of study, including 
differential geometry.  His famous Theorema 
Egregium (remarkable theorem) was published in 
1828.  In it, he established the concept of Gaussian 
curvature and demonstrated that curvature can be 
measured within a manifold (German 
Mannigfältigkeit, a term coined later by Riemann) by 
measuring angles and distances without any need to 
consider the embedding dimension. 

 
 
Gregorio Ricci-Curbastro (1853-1925) was the 
inventor of tensor calculus.  He published, with his 
student Levi-Civita, the theory of tensor calculus in 
1900.  This book made tensor analysis generally 
accessible and was a major reference for Albert 
Einstein as he applied tensor calculus to the general 
theory of relativity.  In turn, Einstein’s formidable 
application of tensor calculus to General Relativity 
gained broad acceptance for the work of Ricci and 
Levi-Civita. 
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10 Relativistic Dynamics 
10.1 The special theory 
10.2 Lorentz transformations 
10.3 Metric structure of Minkowski space 
10.4 Relativistic dynamics 
10.5 Linearly accelerating frames (relativistic) 
 
Hendrik Lorentz (1853-1928) 

The transformation properties of space and time 
were developed by Hendrik Lorentz between the 
years 1892 and 1905, starting long before Einstein.  
He introduced these relations to explain the 
transformation properties of electromagnetic 
waves that generate the famous null result of the 
Michelson-Morley experiment.  Yet he failed to 
grasp the simple underlying principle that Einstein 
put forward in 1905.  Lorentz was a Dutch 
physicist, a professor at the University of Leiden 
during the years when he was working on the 
electromagnetic transformation properties.  He 
received the Nobel Prize in Physics in 1902 for his 
work on the Zeeman effect. 
 
 
 
 
 

 
Hermann Minkowski (1864-1909) 

The concept of space-time was introduced by 
Hermann Minkowski in an article published 
in 1908 titled Raum und Zeit.  He showed 
that space-time constituted a pseudo-
Riemann manifold.  Prior to this paper, 
although space and time were known to be 
“mixed” by the Lorentz transformations, 
there had been no sense of ordinary space 
and time being components of a single 4-
space.  Minkowski’s work on relativity was 
performed while a professor in Göttingen as 
a close colleague of David Hilbert.  The 
introduction to his address on space and time 
is famous: 
“The views of space and time which I wish 
to lay before you have sprung from the soil 
of experimental physics, and therein lies their 

strength. They are radical. Henceforth space by itself, and time by itself, are doomed to 
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fade away into mere shadows, and only a kind of union of the two will preserve an 
independent reality.”  Hermann Minkowski (1907) 
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11 The General Theory of Relativity and Gravitation 
11.1 Riemann curvature tensor 
11.2 The Newtonian correspondence 
11.3 Einstein’s field equations 
11.4 Schwarzschild space–time 
11.5 Kinematic consequences of gravity 
11.6 The deflection of light by gravity 
11.7 Planetary orbits 
11.8 Orbits near a black hole 
 
Bernard Riemann 

Bernard Riemann (1826–1866) was a German 
mathematician who made fundamental contributions 
to differential geometry with the introduction of 
metric spaces in his Habilitationsschrift delivered at 
Göttingen in 1854 with the title On the Hypotheses 
which lie at the Foundation of Geometry.  The work 
treated multidimensional manifolds of arbitrary 
curvature (he coined the term manifold from German 
Manigfältigkeit).  The work was not widely known 
until it was translated into English in 1868 by W. K. 
Clifford.  Riemannian geometry is in general non-
Euclidean, and provided the mathematical 
background for the later development of General 
Relativity. 

 
 
Karl Schwarzschild 

Karl Schwarzschild (1873-1916) was a German 
physicist and astronomer whose name is used to 
describe the event horizon of a black hole—the 
Schwarzschild radius.  He received his PhD in 1896 
on a topic posed by Poincaré.  He joined the faculty 
at Göttingen where he was colleagues with David 
Hilbert and Hermann Minkowski.  At the outbreak 
of World War I in 1914 he volunteered as an officer 
in the German army and saw action on both the 
western and eastern fronts.  It was while he was on 
the eastern front in 1915 and early 1916 that he 
wrote his three famous papers on exact solutions to 
Einstein’s field equations for spherical symmetry.  
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